If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2z^2+31z-16=0
a = 2; b = 31; c = -16;
Δ = b2-4ac
Δ = 312-4·2·(-16)
Δ = 1089
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1089}=33$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(31)-33}{2*2}=\frac{-64}{4} =-16 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(31)+33}{2*2}=\frac{2}{4} =1/2 $
| -3(-2x)=5 | | 47w=24 | | 7/3x+1/3x=4+5/3 | | 4x-2=8+3 | | 24x+60=540 | | 236x+672=69 | | -6x+8=-3x−10 | | --5y=65 | | 63+5w=12w | | 4x+-2=8+3 | | x+2x+(x-40)=180 | | 15x+22x+129=180 | | -2/3(1/6x+12)=-9 | | x*2+45=180 | | (11x+7)+96=180 | | 8x+2=6x+4= | | 6x+36=4-5 | | 5x+3=(-x-2)2 | | x2+8/3x=20/9 | | 8x−9=7x+9 | | 10(2.1x)=31+4 | | 17m^2+19m+2=0 | | -8u+9=17 | | 4x3+2x=36 | | y=0.8(1-0.2)y+200+400+280-0.3(0.2(1-0.2)y) | | 2x+4=7x= | | X+2x^2-80x=180 | | -6-3/8x=9 | | 94+(5x-14)+(3x+4)=180 | | 31=3a | | 10x-15=45-6x | | 11x(2x-15)=180 |